Home Blog

Get Ready to Swing for the Cause: Join the John Holtmann Memorial Golf Tournament

0

Exciting news for our community—the John Holtmann Memorial Golf Tournament is making its grand return, and it’s an opportunity you won’t want to miss! Scheduled for June 12, 2024, at the stunning Lionhead Golf Club in Brampton, Ontario, this event promises not just a day of golf but a vital chance to connect with the natural, organic, and wellness industry’s brightest and best.

Why Participate?

Community Building: The John Holtmann Memorial Golf Tournament is more than just a game. It’s a gathering of like-minded individuals committed to the betterment of health and wellness. For any health food store, this is the perfect setting to forge meaningful relationships with peers, clients, and industry leaders.
Brand Visibility: Participating in this well-loved event places your brand in the spotlight, alongside other key players in the industry. It’s a chance to show your commitment to health and wellness, all while enjoying a day out on one of Ontario’s finest golf courses.
Fun and Engagement: With a host of fun contests, premium raffle prizes, and an all-day food fiesta, the event is sure to provide memorable moments. It’s an enjoyable way to engage with your team and the community, enhancing team spirit and personal connections.
Support a Great Cause: The tournament honors the legacy of John Holtmann, a leader whose passion for the wellness industry was unparalleled. By joining, you contribute to a cause that supports industry growth and community development, echoing his dedication and passion.
So, mark your calendars and ready your golf clubs! Let’s make a difference, one swing at a time. This is an excellent opportunity for every health food store to step out, stand out, and participate in shaping the industry’s future.
We look forward to seeing you at the Lionhead Golf Club—where business meets pleasure and where every shot counts towards a healthier, more connected industry.

CV Sciences, Inc. acquires Elevated Softgels, a flexible, low-moq, nutriceutical manufacturer

0

A Strategic Move to Enhance Product Lines and Market Reach

In a significant development in the wellness industry, CV Sciences, a renowned consumer wellness company focused on hemp extracts and other natural ingredients, has announced the completion of its acquisition of Elevated Softgels, LLC, a leading provider of softgel encapsulation and tinctures. This acquisition marks a pivotal step in CV Sciences’ strategy to expand its footprint in the global health and wellness sector.

Strategic Acquisition for Enhanced Flexibility and Efficiency

Elevated Softgels has built a reputation for its operational flexibility, which supports both low and large minimum order quantities (MOQs). This capability allows for efficient capital use and enhances the speed to market for new products, a critical advantage in the fast-paced wellness industry. By integrating Elevated Softgels, CV Sciences not only broadens its manufacturing capabilities but also reinforces its commitment to quality and compliance, as Elevated Softgels is both GMP-certified and FDA-registered.

Joseph Dowling, the Chief Executive Officer of CV Sciences, expressed his enthusiasm about the acquisition: “We are thrilled that Elevated Softgels and its employees are joining CV Sciences. This is another milestone in our transition to a global health and wellness company. The synergies from this acquisition will enable us to leverage our key assets and relationships within the hemp and supplement sectors to drive long-term growth and enhance shareholder value.”

Immediate Benefits and Future Plans

Elevated Softgels already operates as a profitable entity, and CV Sciences plans to further increase this profitability by leveraging the existing capacity of Elevated Softgels. The acquisition also allows CV Sciences to in-source the production of select products from its +PlusCBD™ line, anticipating significant cost savings. In 2023, products such as softgels and tinctures constituted about 50% of CV Sciences’ total business, underscoring the strategic nature of this acquisition.

Financial Structure of the Deal

The total consideration for the acquisition of Elevated Softgels amounts to up to $1,000,000. This sum includes a $100,000 cash payment made at closing, the issuance of 17,422,181 shares of CV Sciences’ common stock valued at $700,000, and the potential for additional cash and stock payments up to $200,000 based on performance targets over the next 12 months. The financial arrangement reflects a balanced approach to acquiring a valuable asset while maintaining fiscal responsibility.

Growth and Opportunities

The acquisition is expected to be accretive to CV Sciences’ earnings from the first year and to contribute to scaling economics in subsequent years. CV Sciences has also filed a Current Report on Form 8-K, providing detailed information about the transaction terms and encouraging investors to review these details to understand the full scope and impact of the acquisition.

As CV Sciences continues to integrate Elevated Softgels into its operations, the company looks forward to enhancing its product offerings and strengthening its market position. This strategic move not only amplifies its capacity to serve current and new clients but also sets the stage for sustained growth and innovation in the evolving landscape of health and wellness.

The acquisition of Elevated Softgels by CV Sciences represents a well-calculated strategy to enhance its product line, increase operational efficiency, and achieve long-term profitability in the competitive wellness industry. This merger is poised to create substantial value for stakeholders and reaffirm CV Sciences’ commitment to providing high-quality, science-backed wellness products to its growing customer base.

The Growth Trajectory of the Medical Nutrition Market

0

Forecasted Expansion to Reach USD 88,940 Million by 2030

The demand for medical nutrition has seen a significant rise, driven by a growing recognition of its critical role in managing health conditions and diseases under professional supervision. With a robust annual growth rate of 6%, the global medical nutrition market is on track to increase from USD 58,870 million in 2023 to an impressive USD 88,940 million by the year 2030.

The segments comprise specialized medical food products designed to meet the specific nutritional needs of patients diagnosed with various conditions. These products are integral to disease management strategies, tailored to provide essential nutrients that support medical treatments.

Market Dynamics and Key Players

North America leads the market with a 34% share in 2019, followed by Europe and Asia. The field features prominent companies such as Abbott Nutrition, Nestlé, and Mead Johnson, alongside others like Fresenius Kabi and Groupe Danone, contributing to innovation and market growth. The competitive landscape is diverse, with these major players spearheading developments and expanding the reach of medical nutrition solutions globally.

Report Insights

The report offers a detailed analysis of the medical nutrition market, providing insights that cover a wide array of critical aspects from 2019 to 2030. This includes sales volume, revenue forecasts, and a thorough examination of market dynamics. The segmentation of the market in the report is extensive, covering different types, applications, and geographic regions.

Key Report Features:

Market Overview: Detailed market figures and comprehensive analysis.
Growth Trends: Insights into potential rates of market growth and expansion.
Competitive Landscape: Analysis of leading market players and their strategies.
For Industry Stakeholders

This report is a valuable resource for companies operating within the medical nutrition sector. It assists manufacturers, newcomers, and companies within the industry chain by providing essential market data that supports strategic planning and decision-making processes.

Pharmacy in Primary Care in Canada and the United States

0

The evolving role of pharmacy in primary care in Canada and the United States represents a significant area of healthcare policy and advocacy. This discussion explores how both countries are shaping the integration of pharmacists into the primary care framework, highlighting the differences and similarities in their approaches, and considering the implications for future healthcare delivery.

Canadian Perspective on Primary Care Pharmacy

Canada’s approach to integrating pharmacists into primary care is proactive and collaborative. The Canadian Pharmacists Association (CPhA) plays a central role in advocating for the expansion of pharmacists’ roles within the healthcare system. This includes organizing national summits, like the “Transforming Primary Care in Canada Summit,” which gathers stakeholders to discuss and set agendas for the future role of pharmacists in primary care .

The integration of pharmacists in Ontario, where they are embedded within Family Health Teams and Community Health Centers, exemplifies Canada’s strategy to enhance collaborative care models. These pharmacists engage in direct patient care, significantly contributing to health outcomes and healthcare optimization. The focus in Canada seems to be on enabling pharmacists to extend their scope of practice to include more patient-facing responsibilities, such as managing chronic diseases and conducting wellness assessments .

U.S. Perspective on Primary Care Pharmacy

In contrast, the United States emphasizes regulatory frameworks and formalized training pathways to integrate pharmacists into primary care. The American Society of Health-System Pharmacists (ASHP) supports the role of pharmacists through the development of standards and credentialing processes that ensure pharmacists are prepared to meet the primary care needs of patients. This includes the provision of medication management services (MMS) in diverse settings, highlighting a structured approach to primary care integration .

The Primary Care Collaborative (PCC) in the U.S. focuses on advocating for policy reforms that facilitate the integration of pharmacists through alternative payment models. These models aim to enhance the delivery of integrated, community-connected care. The PCC’s advocacy is geared towards ensuring that primary care policies empower patients and support healthcare providers through team-based care models .

Comparative Analysis

While both countries see the value in integrating pharmacists into primary care, their methods and focus areas differ. Canada’s approach is more directly focused on practice scope expansion and the practical integration of pharmacists into healthcare teams. In contrast, the U.S. approach places a greater emphasis on formalizing the role of pharmacists through education, training, and policy advocacy to align with broader healthcare reforms.

This difference may be attributed to the distinct healthcare systems in each country—with Canada’s publicly funded system allowing perhaps more streamlined implementations of such integrations compared to the U.S.’s mixed system, which involves a variety of payers and requires navigating complex regulatory environments.

Implications for Future Healthcare Delivery

As pharmacists in both countries continue to assume more significant roles in primary care, the impact on patient care efficiency, accessibility, and outcomes is expected to be profound. Pharmacists’ unique expertise in medication management, coupled with their accessibility, positions them to play a crucial role in the prevention and management of chronic diseases, ultimately contributing to the sustainability of the healthcare system.
As these developments continue, ongoing dialogue and cross-border learnings could prove beneficial in optimizing the roles of pharmacists in the ever-evolving landscape of healthcare.

Bridging Postpartum Blues A Comprehensive Breakthrough Study

0

Dietary supplement for mood symptoms in early postpartum: a double-blind randomized placebo controlled trial

Jeffrey H. Meyer,a,b,∗ / ZhaoHui Wang,a,b / Apitharani Santhirakumar,a,b / Yekta Dowlati,a,b / Natalia Docteur,a,b / Aqsa Shoaib,a,b / Jareeat Purnava,a,b / Yanqi Wang,a,b / Wei Wang,a,b / Sheng Chen,a,b / Muhammad I. Husain,a,b / Rashmi de Silva Wijeyeratne,a,b / Heba Reeyaz,a,b / Catalina Baena-Tan,a,b / Yuko Koshimori,a,b Zahra Nasser,a,b and Valery Sita,b

a. Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, M5T 1R8, Canada
b. Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, M5T 1R8, Canada

Summary

Background Postpartum blues (PPB) is a frequent syndrome of sad mood, crying spells, anxiety, restlessness, reduced appetite, and irritability, typically peaking day 5 postpartum. When severe, it greatly increases risk for later postpartum depression. This trial compared a dietary supplement to placebo on PPB severity. The supplement was designed to counter downstream effects of elevated monoamine oxidase A level, implicated in causing PPB.

Methods Participants recruited by advertisement from the Toronto region completed procedures at CAMH, Canada and/or participantshomes. Oral supplement or identical appearing relatively inert placebo were administered in randomised, double-blind fashion. Supplement was blueberry juice and extract given four times between nighttime day 3 and morning day 5 postpartum; tryptophan 2 g nighttime day 4 postpartum, and tyrosine 10 g morning day 5 postpartum. On day 5, depressed mood induction procedure (MIP) and postpartum blues were assessed. All data is presented (NCT03296956 closed, clinicaltrials.gov).

Findings Between January 2019 and December 2022, participants took supplement (n = 51) or placebo (n = 52). There was no significant effect on primary outcome MIP on visual analogue scale for depressed mood (mean difference = 0.39 mm, 95% CI: 6.42 to 5.65 mm). Stein Maternity Blues scores, exploratory PPB measure, was lower in the active group (effect size 0.62; median, interquartile range (IQR): active 2.00 (IQR 1, 4); placebo 4.00 (IQR 1.5, 6); regression with general linear model, supplement effect, β coefficient = 1.50 (95%: CI 2.60, 0.40), p = 0.008; effect of CES-D crying category before supplement, p = 0.030.00000023). Twenty-six and 40 different adverse events occurred within 25% and 42% of supplement and placebo cases respectively (Chi-Square, p = 0.06).

Interpretation The primary outcome was negative for effect on depressed mood induction, however the supplement moderately reduced PPB.

Funding CAMH/Exeltis.

Copyright © 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Postpartum blues; Postpartum depression; Tryptophan; Tyrosine; Antioxidants

Introduction

Postpartum blues is a common syndrome, occurring in up to 75% of women depending on the threshold applied,1 that may include episodes of sad mood, crying spells, anxiety, restlessness, reduced appetite, fatigue and irritability. It typically starts around day 3 postpartum, peaks at day 5 postpartum and then decreases over several days to a week.13 Postpartum blues is an important problem because it may be harshly unpleasant; and when severe may be viewed as prodromal for postpartum depression (PPD) since severe postpartum blues raises later risk for PPD at least four fold.13 PPD is a major depressive episode (MDE) with some symptoms starting within a month of giving birth and a MDE being present within several months,4 with some definitions extending this latter criterion to 6 months to a year.5 Symptoms of MDE, which last at least two weeks, include depressed mood and/or anhedonia at least most of the day; and total at least five symptoms which may include significant weight change, insomnia or hypersomnia, psychomotor agitation or retardation, fatigue or loss of energy, feelings of worthlessness or inappropriate guilt, diminished ability to think or concentrate, or recurrent thoughts of death.4 PPD is the most common complication of childbearing at 13% prevalence6,7 and there are 140 million births globally per year. Unfortunately, evidence based interventions to prevent postpartum blues suitable for widespread use are lacking. The present study compares a dietary supplement to placebo for preventing postpartum blues.

The dietary supplement tested in the present study is intentioned to create resiliency against downstream effects of elevated monoamine oxidase A (MAO-A) level at day 5 postpartum, when postpartum blues are typically most prominent (see Supplementary introduction).

MAO-A is the main metabolic pathway of serotonin, and contributes to the metabolism of other monoamines like norepinephrine and dopamine; and in the process generates hydrogen peroxide. Depletion of these monoamines,810 is associated with high risk of precipitating depressive syndromes. Greater MAO-A level is associated with greater MAO-A activity in brain tissue,11 so to counter greater magnitude of the functions of MAO-A during early postpartum, several components were included in the dietary supplement. It is composed of blueberry juice and blueberry antioxidants to counter increased production of hydrogen peroxide, L-tryptophan to replace serotonin lost via greater MAO-A metabolism, and L-tyrosine to replace norepinephrine and dopamine also lost via greater MAO-A metabolism.

In rodents, during conditions in which release of monoamines is stimulated, administration of L-tryptophan may increase the release of serotonin and administration of L-tyrosine may increase the release of dopamine and norepinephrine1214 (also see Supplementary introduction). The latter two ingredients were given at levels greater than those in diet and were previously demonstrated not to affect total level of tryptophan and tyrosine in breast milk.15,16 This was expected because approximately 99% of tryptophan and tyrosine are found as proteins in breast milk so influencing the 1% free portion has negligible effect on overall levels of these amino acids.15,16 In addition, L-tryptophan may help with sleep initiation17 and L-tyrosine may improve cognitive performance during stress.18

An open trial of this supplement, completed prior to COVID-19, was associated with a substantively reduced magnitude of depressed mood induction on day 5 postpartum.19 The primary aim of the present study is to assess the effect of this dietary supplement on postpartum blues on day 5 postpartum. This involves assessing the effect of depressed mood induction and applying a scale for overall severity of postpartum blues.

A secondary aim, since severity of postpartum blues is a strong predictor of latter PPD,1,2 is to assess effect of dietary supplement on progression to depressive symptoms for the subsequent six months. The hypotheses are that the dietary supplement will be associated with a lesser severity of postpartum blues and less progression towards depressive symptoms over the subsequent six months.

Fig. 1: Trial profile: a Randomization took place before giving birth in order to deliver supplement prior to giving birth. b Postpartum blues typically peaks/is present at day 5. c 52 started supplement but one had a rash and did not complete assessments. 52 participants who started taking the supplement had data to include in record of adverse events and 51 participants who completed taking the supplement had data to include in intent to treat analysis.

Methods

Study design

This double blind placebo controlled trial was conducted at the Centre for Addiction and Mental Health (CAMH), Toronto, Canada. Participants and all members of the study team were blinded, except for the CAMH pharmacy and the National Sanitation Foundation (NSF) (Guelph, Canada) who prepared the study products. The main interaction between blinded and unblinded research staff was pickup of study product from pharmacy which had no distinguishing features in containers between the active and placebo. Interactions with study staff mostly took place at participantshomes. During the time when acute COVID-19 was a greater danger to society, a shift to home visits and remote communication was necessary because research projects were required to be maximally off site from research hospitals to protect staff, hospital clients and the pregnant participants from outbreaks of infection. The trial was registered at ClinicalTrials.gov (NCT03296956).

Ethics

This study was approved by the CAMH Research Ethics Board (REB#083/2015). Approval of the study by Health Canada was also given, termed as, no objectionto the project (Clinical Trial Application no. 207773, protocol included, Supplementary Appendix 1). All experiments on human subjects were conducted in accordance with the Declaration of Helsinki and the International Conference on Harmonizations Good Clinical Practice guidelines. All participants provided written informed consent.

Participants

Between December 1, 2018, and December 25, 2022, 151 participants located within a 3 h car drive of Toronto were recruited by advertisement to begin screening procedures during the third trimester of their pregnancy (Fig. 1). At nighttime of postpartum day 3, 116 participants were eligible and 104 started the supplement with 103 completing the supplement and the primary measures at postpartum day 5. The latter two groups were included in the safety and treatment effect analyses. One-hundred participants completed six month follow-up, ultimately ending July 25, 2023 when the completion of 100 participants through the follow up phase of the study occurred. All participants provided written informed consent. Main inclusion criteria were age 1845, self report of good health, pre-pregnancy body mass index of 18.540 (kg/m2), and normal cardiovascular vital signs. All participants reported being pregnant and therefore of female sex. Main exclusion criteria included history of MDE or other psychiatric illness or substance use disorder in the past 10 years based on the Structured Clinical Interview (SCID) for DSM-5,20 smoking cigarettes in the past 5 years, current substance use (screened by urine drug screens at initial screening and at day 5 postpartum, the latter applied as withdrawal criterion), neurological illnesses, autoimmune disease, malignant neoplasm, metabolic disease, or use of medications that could influence mood or are used to treat illnesses associated with changes in mood state. While women with a past history of MDE might benefit from supplementation, our approach was to sample women whose main reason for mood change was due to giving birth rather than history of MDE, which might create more heterogeneity to symptom measures. Since the supplement was not intended as a treatment for PPD, participants were rescreened to exclude MDE prior to taking supplement two weeks before the predicted time to give birth as it was not expected that full MDE symptoms would occur between this timepoint and postpartum day 5.

Randomization and masking

The ratio of active treatment to placebo was 1:1. Participants were randomized evenly to either active or placebo within randomly chosen blocks of 2, 4, 6, 8 or 10 participants using IBM SPSS version 24 by the CAMH pharmacy. Placebo pills were identical in appearance; whereas placebo pouches and placebo beverage were identical in appearance and taste to their active counterparts (detailed under procedures). To assess success of masking, study participants indicated the degree of their belief that they received active or placebo on a 10 cm visual analogue scale (VAS) at the end of their enrolment.

Procedures

At the first in person visit completed in their third trimester, participants completed the SCID for DSM-5, the Edinburgh Postnatal Depression Scale (EPDS), the Hamilton Depression Rating Scale, structured questionnaires regarding health and past substance use as well as a urine drug screen to verify current physical and mental health. Two weeks before the estimated due date, participants repeated the mood module of the SCID for DSM-5 and the EPDS to exclude current MDE. At day 3 postpartum, presence of any neonatal or obstetrical complications were reviewed to exclude those with high severity events. After the COVID-19 pandemic began, screening questions to exclude participants with symptoms of COVID-19 were conducted in the evening of day 3 and day 4 postpartum.

Key ingredients of the active dietary supplement included: 2 g of L-tryptophan (Apotex, two 1gram tablets) 10 g of L-tyrosine (Natural Factors, twenty 500 mg tablets), blueberry juice and blueberry extract (Vitablue). On the night of day 3, the morning and evening of day 4, and morning of day 5 postpartum, participants ingested one pouch of active extract or placebo mixed with blueberry juice or placebo. The blueberry juice, blueberry extract and corresponding placebo were prepared by NSF. The placebo pouches matching the blueberry extract contain Shade grape blue powder. The placebo drink was blue through natural colouring with blueberry taste through natural flavouring, but had negligible antioxidant properties and similar sugar level to the active drink. Placebo pills were empty hard gelatin capsules from Capsugel and Lactose monohydrate from Galenova, identical in appearance to encapsulated tryptophan and tyrosine, all prepared by the CAMH pharmacy. Active beverage (weight 369.55 g) included blueberry juice concentrate (9.99%, Milne), filtered water (79.5%, National Sanitation Foundation), natural blueberry flavour (0.75%, Bell Flavours), granulated sugar (5.99%, Caldic) and citric acid (0.1%, Caldic). The pouch, which was added to the beverage just prior to time of ingestion, included Vitablue North American Blueberry Extract (0.55%, Futureceuticals) and granulated sugar (3.12%, Caldic). Placebo beverage (weight 362.55 g) included natural blueberry flavour (1%, Bell Flavours), filtered water (89.11%, National Sanitation Foundation), granulated sugar (5.71%, Caldic), citric acid (0.2%, Caldic) and Shade Bordeaux (0.25%, GNT). The pouch, which was added to the beverage just prior to the time of ingestion included shade grape blue powder (0.28%, GNT) and granulated sugar (3.46%, Caldic). Volumes and ingredient proportions of beverages varied by less than 5%. Taste was identical across the two products as assessed by the National Sanitation Foundation and study personnel at CAMH. ORAC (Oxygen Radical Absorbance Capacity) values of study product from the same batch were assessed prior to use, at 6 months and at 10 months whereupon a new batch was given to verify consistency across batches as well as in comparison to the previous open trial.19 Participants were allowed to breastfeed. Phone call reminders were given for the first three doses, and the last dose (inclusive of tyrosine or placebo) was supervised by study staff. Participants were also asked about completion of each previous dose at these timepoints to verify adherence.

List of outcomes

The primary outcome was change in 10 cm visual analogue scale (VAS) after depressed mood induction as compared to neutral mood induction. The VAS was measured twice approximately 15 min apart, after neutral mood induction and then measured twice again approximately 15 min apart after depressed mood induction, having been studied in the previous open trial of this supplement.19 A highly correlated secondary outcome was change in profile of mood states score (POMS) after depressed mood induction as compared to neutral mood induction, with the POMS measured once after each of the same mood inductions as the VAS (Fig. 2). The neutral mood and sad mood induction procedures combine the methods of reading selfreferent statements Velten21 and music from Clarke22 to achieve a consistent response.19 As the main aim of the present study was to assess overall severity of postpartum blues after the dietary supplement, an important exploratory outcome was self-report of the Stein Maternity Blues Scale on day 5. The Stein Maternity Blues Scale as a continuous variable was the global measure of postpartum blues because it covers many aspects of postpartum blues, has a clearly defined time for symptom report being the day it is given, is straightforward to administer, is well understood by participants, and has a scale for each item.

Fig. 2: Timeline of key measures in peripartum: CES-D, Center for Epidemiologic Studies Depression Scale (applied to describe days −2 to day 4). VAS, Visual Analogue Scales; POMS, Profile of Mood States.

Since the second aim was to explore the relationship between the dietary supplement administration and later depressive symptoms, another important exploratory outcome was to assess overall severity of depressive symptoms over the subsequent 6 months with the Center for Epidemiologic Scale for Depression (CES-D). The CES-D was prioritized because it queries a broad range of depressive symptoms, yields similar scores with remote and in person administration, offers a substantial dimensional aspect as a continuous variable, has individual items relevant for healthy states and contains substantial distribution of scale within both healthy and MDE categories. Additional measures recorded included the EPDS and the Beck Depression Inventory (BDI). The EPDS is a measure of risk for presence of a MDE in postpartum, with scores above 10 indicating high likelihood. The BDI is a self-report measure of MDE presence and severity of MDE. Adverse events (AE) were recorded using a structured questionnaire where participants rated severity of symptoms that emerged from mild to severe, on days 3 and 5. AE were considered present if an event post intervention at day 5 was not observed pre-intervention at day 3, or was more severe at day 5 than day 3.

Statistics

To assess the MIP, a linear mixed effects model examined effect of group (active versus placebo) and induction state (neutral or depressed mood induction) as fixed effects and participant as a random effect, to evaluate the effect of group on change in depressed mood measured by the mean VAS before and after MIP as well as the POMS. The VAS and POMS are continuous variables and repeated measures. To assess overall severity of postpartum blues, a regression analysis with a general linear model was applied, comparing active versus placebo with crying prior to supplement, measured as a question on the CES-D, as a covariate and a categorical variable; with total Stein Maternity Blues Scale score, a continuous variable as the dependent variable. To assess depressive symptoms in the subsequent 6 months, a linear mixed effect model was applied with total CES-D score, a continuous variable, as the dependent variable, evaluating the interaction between time (change in postpartum CES-D from baseline, 10 days, 1 month, 3 months, 6 months postpartum) and group (active versus placebo). No additional covariates were added to this model. Normally distributed variables are described by mean, standard deviation and/or confidence intervals. Variables with a skewed distribution are described by median and interquartile range. For variables with a skewed distribution the median was applied to calculate effect size.

All participants were included in the analyses, but as the original intention was to withdraw cases with MDE prior to supplement administration, analyses of postpartum blues are also presented without two cases who had MDE level symptoms prior to supplement administration. Also, since the CES-D crying score for the week prior to supplement completion had an imbalance with more cases receiving active (n = 4) but not placebo (n = 0), analyses of postpartum blues are also presented with and without this group as a sensitivity analysis. All analyses were carried out using IBM SPSS 25, or SAS version 9.4.

With a sample size of 100 (50 per group), the minimum detectable effect size to achieve 80% power in terms of a difference in change in MIP effect on VAS scores between the diet supplement and the placebo groups is 0.56 (Cohens d). Effect size was calculated using a two-tailed test and a 0.05 significance level. A data monitoring committee was not used.

Role of funding source

Approximately 85 per cent of study funding was from CAMH and 15 per cent was from Exeltis. CAMH has a licensing agreement with Exeltis in which CAMH receives funding from Exeltis; and Exeltis will manufacture and distribute the dietary supplement. Exeltis had no role in study design, data collection, data analysis, data interpretation, or writing of the report. Dr. Meyer is the inventor of the supplement. Dr. Meyer was also the principal investigator (PI), qualified investigator for medical supervision of study product administration, wrote first draft of report, designed study, contributed to statistical analyses, led team, and led data management. To address this, there was extensive involvement of two staff statisticians (Dr. Wei Wang and Dr. Sheng Chen) and a study monitor appointed to CAMH independently of Dr. Meyer. The approaches for the main analyses of the study were reviewed and approved (or modified as appropriate) by the statisticians. In addition, study data was provided to a statistician independent of CAMH and Exeltis for statistical analysis (Dr. Mingyang Li), which has been integrated in the manuscript. The study monitor inspected 100% of source documents and 30%100% of the correctness of their transfer into case report forms as well as transfer to REDCap data storage approximately every 6 months.

Results

Between January 2019 and December 2022, 151 participants were assessed for eligibility. Of these, 128 were randomized to receive a delivery of active or placebo 1 month prior to giving birth and 116 were eligible at day 3 postpartum (Fig. 1). 104 participants reported starting the supplement on schedule but one participant in the active group had a rash and was withdrawn prior to taking tryptophan or tyrosine. 103 participants began assessment measures and completed intake of the supplement with 51 participants receiving active and 52 participants receiving placebo. All data from participants was included in the study analyses, regardless of their adherence to the supplement or timing of taking the supplement. All 103 cases are included in analyses of symptoms and all 104 cases are included in report of adverse events. During the six month follow up, 3 participants withdrew, 2 after day 10 and 1 after 1 month. Baseline demographic characteristics for active and placebo groups were similar in regards to age, parity, weight, pre-pregnancy body mass index and are described in Table 1.

There were group dissimilarities prior to supplement intake regarding symptoms of MDE and crying. Over postpartum day 2 to 4, two participants in the active condition had MDE-level severity symptoms (based on scores 20 on the CES-D and BDI) versus zero in the placebo condition, and four individuals in the active condition had CES-D crying scores of 3 versus zero in the placebo group. One single case in the active group had both MDE-level symptom severity and a CES-D crying score of 3 (see Discussion regarding recent literature suggesting these unanticipated differences likely attributable to COVID-19 related stress23,24 and supplementary Figure S1). The dietary supplement is not meant to treat PPD and the study protocol was intended to exclude MDE cases prior to supplement administration. However, the dietary supplement was inadvertently given to the two cases with full MDE symptoms because the study design assumed, based on pre-COVID-19 expectations, that screening two weeks prior to giving birth would be sufficient to exclude MDE cases prior to receiving supplement.

The outcome of the MIP effect on VAS was not significantly different between groups (difference in change score between groups 0.39 mm 95% CI: 6.42 to 5.65 mm, mixed effects model, p = 0.90, Fig. 3). Similarly, independent analysis with general linear regression found no effect of group (p = 0.90). The change in POMS score after neutral mood induction as compared to after MIP, which correlated highly with change score in VAS depressed mood (Spearmann correlation coefficient, r = 0.57, p < 0.001), also showed no significant difference between groups in elevation after MIP procedure between groups (difference in MIP effect on POMS between groups 3.33, 95% CI: 16.61 to 9.96, p = 0.36). Similarly, independent analysis with general linear regression found no effect of group (p = 0.36).

Fig. 3: No effect of mood induction procedure on visual analogue scale for depressed mood: VAS, Visual Analogue Scale for Depressed Mood (in mm). Change in VAS shown is mean of third and fourth VAS minus mean of first and second VAS. Error bars represent standard deviation. No significant effect of treatment on change in VAS (mixed effects model, p = 0.90), CI (−6.42, 5.65).

The Stein Maternity Blues Scale scores were lower in the active group (effect size 0.62; median, interquartile range (IQR): active 2.00 (IQR 1, 4); placebo 4.00 (IQR 1.5, 6); regression with general linear model, supplement effect, β coefficient = 1.50 (95% CI: 2.60, 0.40), p = 0.008; effect of CES-D crying before supplement, p = 0.030.00000023, latter depending on crying category compared). While the independent statistical analysis indicated that assumptions were met at an acceptable level, there was some skewedness of residuals, largely caused by one case, which, when removed, led to a more significant effect of treatment (p = 0.001). This case was one of the two cases who had MDE level symptoms prior to supplement. Table 2 presents differences between groups, significance and confidence interval for the estimated coefficient with and without the two cases who unexpectedly had MDE level severity symptoms prior to taking the supplement (for histograms, see Supplementary Figure S2). Also, in contrast to a previous open trial conducted prior to COVID-19, it was observed that many participants reported crying in the week prior to taking the supplement as reflected on CES-D crying scores which were significantly more elevated during waves of COVID-19 (exploratory analysis, Wilcoxon Two-Sample Test Statistic = 1247.5, p = 0.037, Supplementary Figure S1). CES-D crying scores prior to supplement were also a strong predictor of postpartum blues at day 5 so they were included in the model. Additionally, as an alternative approach to determining effect size with the median, independent statistical analysis reported the difference in median Stein Maternity Blues Scale found with quantile regression, t = 2.83, p = 0.006.

Regarding change in depressive symptoms from the week prior to supplement to 6 months later, there was a significant interaction between time of CES-D score and active versus placebo reflecting a greater transition to relatively lower CES-D scores in the active group (mixed effects model, F4,397 = 2.4, p = 0.05, Fig. 4, and Supplementary Figure S3). Independent statistical analysis applying a random intercept and random day effect model with piece-wise day effect, including effects of treatment group, day, day 30, day 90, day 180, and treatment group by day 90, found a significant interaction between treatment group and time at 3 months and beyond, t297 = 2.59, p = 0.01). A similar trend was observed in change in EPDS scores of an interaction between time of CES-D score and condition of active versus placebo.

Twenty-six and 40 AEs occurred within 25% and 42% of active and placebo cases respectively, and there was a trend that they were less likely to occur in participants in the active group (described in Table 3, Chi-Square, p = 0.06). AEs were likely attributable to being postpartum rather than the protocol, with the possible exception of one rash in the active condition. The reduction of overall AEs in the active condition appeared attributable to less drowsiness and headache in the active condition. There were no serious adverse events.

Mean scores on the VAS for belief that participants received active versus placebo at the end of the study were similar between treatment groups and nonsignificant (Wilcoxon Two-Sample Test Statistic = 2670.5, p = 0.31). There was no significant association between belief that the supplement would be effective prior to receiving supplement and reduction in MIP effect on VAS for depression at day 5, reduction in day 5 Stein Maternity Blues Scale, or lower CES-D score at 6 months postpartum.

Fig. 4: Depressive symptoms over first 6 months postpartum: CES-D, Center for Epidemiologic Studies Depression Scale. Interaction between changes in CES-D over time favoured active supplement (interaction between treatment and time, mixed effects model, p = 0.05; alternatively piecewise regression, p = 0.01). Vertical lines represent standard error.

Discussion

The main negative finding was no effect of the dietary supplement on severity of depressed mood induction. An important positive finding was that the dietary supplement was associated with less postpartum blues with an effect size of 0.6, which is larger than other interventions in the PPD supplement field.2527 Additional findings were less adverse events in those taking the active supplement and that over the following six months, those in the supplement condition shifted towards less depressive symptoms, all of which may be related events. The potential influence of COVID-19 on findings, including the negative finding on MIP, should also be considered.

In the present study, it is plausible that most adverse events are attributable to recently giving birth and that the tendency towards lesser frequency of adverse events with active supplement, might reflect a reduction of postpartum blues symptoms. For example, in the active condition there was less drowsiness and less headache which could correspond to the low energy and headache of postpartum blues. Irrespective of the strategy of compensating for elevated MAO-A level, the individual ingredient of L-tryptophan is known to often assist sleep,17 which when better is associated with better energy. L-tyrosine has been shown to enhance cognitive performance during psychological stressors including those that cause physical discomfort and pain,15,16,18 so collectively the effects of tryptophan and tyrosine could reduce perceived problems of low energy and headache.

Cost-effectiveness of this intervention can be considered in comparison to other prevention approaches for PPD such as peer support, counselling, educational programs, social support, cognitivebehavioural therapy, motivational interviewing, supportive care, mindfulness with or without mobile app support, and antidepressants.28,29 Due to cost and scarcity, and in the case of antidepressants potential adverse events and/or undesirability, with the possible exception of some apps, most of these interventions are only available to women at high risk for MDE. In contrast the supplement in the present study could be available to women at low or high risk for MDE. Clear instructions regarding use and a straightforwardly ingestible version of the supplement would aid generalizability. However, it should be noted that therapy interventions could be blended with the supplement regimen, a possible direction for future clinical trials.

Several limitations were present. First, now known in hindsight, COVID-19 is associated with greater depressive symptoms in postpartum,23,24 plausibly due to additional stresses, such as fear of the baby or mother getting COVID-19 which has been identified as a predictor of depressive symptoms24; and an additional concern for participants in the present study was fear of not having a partner present during childbirth due to hospital rules excluding a partner with a symptom of COVID-19. This may account for the two cases not having MDE level symptoms two weeks prior to giving birth yet then having MDE symptoms over 2 to day 4 postpartum; and similarly the high prevalence of crying spells occurring during waves of COVID-19. Also, given the unexpected high prevalence of crying spells reported at the time of birth prior to supplement intake and its strong relation to later severity of postpartum blues, the crying spells rating of the CES-D was applied as a covariate. However this was not planned prior to the trial as COVID-19 emerged during the trial. Another limitation was that the MIP had limited effect compared to a previous study.19 Several reasons for this are speculated, such as lack of adaptation of the procedure from the hospital setting to home, where level of comfort associated with at-home administration may have reduced induction of sad mood, environmental distractions may have interfered with steady mood state, or participants may have experienced fear of contracting COVID-19 from the visiting assessment team who were wearing N95 masks and sitting on plastic sheets. While placebo effect and expectancy bias are considerations, there was no evidence that greater participant belief of receiving supplement or greater belief that supplement would be effective was associated with a lesser reduction in VAS change after the MIP.

It may seem conceptually unlikely that a dietary intervention completed at day 5 is associated with less depressive symptoms 6 months later, but the link between severe postpartum blues in early postpartum and presence of depression symptoms several months later is well established. For example, studies from OHara and colleagues, Adewuya, and Hannah et al. report consistent results of high level of postpartum blues being associated with 4 fold, 10 fold and 85 fold greater risk of PPD one and a half to two and a half months later.13 In the present study, severity of postpartum blues at day 5 was a strong predictor of depressive symptoms over the following 6 months (mixed effects model, effect of day 5 Stein Maternity Blues Scale on interaction of CES-D and time, p < 0.001). As to how countering effects of elevated MAO-A protein could have longer lasting benefit, preventing monoamine deficits could be helpful since monoamine depletion, whether by reduction of serotonin precursor tryptophan, 8 inhibition of tyrosine hydroxylase through administration of α-methyl-p-tyrosine9 or removal of all three by disruption of vesicular storage via reserpine10 leads to depressive syndromes, with the latter occurring after substantial time delay. Future studies could consider larger scale randomized double blind placebo controlled trials to assess the impact of the dietary supplement to prevent postpartum depressive symptoms at thresholds for MDE over 6 month follow up, or to evaluate impact on prevalence of MDE through cohort studies in settings where the dietary supplement is broadly in use.

Overall, the effect size of the dietary supplement for reducing postpartum blues was higher than previous report of dietary supplements tested for preventing postpartum blues or PPD. The supplement was also associated with less adverse events as compared to placebo which can be attributed to by less fatigue and headaches possibly reflecting a reduction in postpartum blues. COVID-19 is suspected to have led to unexpected onset of MDE level symptoms and frequent crying spells in participants earlier in the postpartum period than past timeframes, and adapting the MIP to home use combined with the stressful conditions of COVID-19 may have interfered with its performance. The exploratory finding of progressively less depressive symptoms over time to six months follow up in the active condition is a promising direction for further study, and might be related to impact on postpartum blues, which is known to strongly predict later depressive symptoms.

*Corresponding author. Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, CAMH, Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada. E-mail address: jeffrey.meyer@utoronto.ca (J.H. Meyer).

__________________

Contributors

JHM was the principal investigator, qualified investigator for medical supervision of study product administration, wrote first draft of report, designed study, contributed to statistical analyses, led team, led data management. ZW, AS, YD, YK, AS, ND, JP, YW, RW, HR, ZNcontributed to participant recruitment, and data collection. YDcontributed to study design. MIHprovided backup medical supervision of study product administration. AS, WW, SC, RW, HR, CBT, VScompleted statistical analyses. JHM, ZW, AS, AS, ND, JP, YW, VS accessed and verified the underlying data and take responsibility for the integrity of the data and the accuracy of the data analysis. All authors had full access to all the data in the study. All authors contributed to critical review and editing of the manuscript and had final responsibility for the decision to submit for publication. All authors read and approved the final manuscript.

Data sharing statement

The study protocol will be attached as appendix 1 at the time of publication. The deidentified clinical trial data will be stored on the CAMH research server and available upon reasonable request to the corresponding author via email subsequent to the time of publication.

Declaration of interests

JHM is the inventor on patents for the dietary supplement and there is an agreement between CAMH and Exeltis for the latter to manufacture, and distribute the dietary supplement. JHM also has patents for blood biomarkers in mood disorders to predict neuroinflammation, elevated MAO-B level and elevated MAO-A level in the brain. JHM has received operating grant funding from Exeltis and Sanofi in the past 2 years. MIH receives research grants from the Canadian Institutes of Health Research, CAMH Foundation, University of Toronto, COMPASS Pathfinder; stipend from Society of Biological Psychiatry; payment or honoraria from the American Society of Clinical Psychopharmacology and American College Health Association; consulting fees from Wake Network Inc. and stock options in Mindset Pharma Inc.

Acknowledgements

This research project was funded by the Centre for Addiction and Mental Health (CAMH) and Exeltis. CAMH has a licensing agreement with Exeltis who provides some funding to CAMH. Drs. Meyer and Husain receive salary support from Canada Research Chair awards. Dr. Mingyang Li, independent statistician of 1680018 Ontario Ltd., conducted statistical analyses of the datasets underlying the study.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi. org/10.1016/j.eclinm.2024.102593.

References

1 OHara MW, Schlechte JA, Lewis DA, Wright EJ. Prospective study of postpartum blues. Biologic and psychosocial factors. Arch Gen Psychiatry. 1991;48(9):801806.

2 Adewuya AO. Early postpartum mood as a risk factor for postnatal depression in Nigerian women. Am J Psychiatry. 2006;163(8):14351437.

3 Hannah P, Adams D, Lee A, Glover V, Sandler M. Links between early post-partum mood and post-natal depression. Br J Psychiatry. 1992;160:777780.

4 American_Psychiatric_Association. American psychiatric association: diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

5 Sacher J, Chechko N, Dannlowski U, Walter M, Derntl B. The peripartum human brain: current understanding and future perspectives. Front Neuroendocrinol. 2020;59:100859.

6 OHara MW, Swain A. Rates and risk of postpartum depression – a meta analysis. Int Rev Psychiatry. 1996;8:3754.

7 Wisner KL, Perel JM, Peindl KS, Hanusa BH, Piontek CM, Findling RL. Prevention of postpartum depression: a pilot randomized clinical trial. Am J Psychiatry. 2004;161(7):12901292.

8 Young SN, Smith SE, Pihl RO, Ervin FR. Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology. 1985;87(2):173177.

9 Verhoeff NP, Kapur S, Hussey D, et al. A simple method to measure baseline occupancy of neostriatal dopamine d(2) receptors by dopamine in vivo in healthy subjects. Neuropsychopharmacology. 2001;25(2):213223.

10 Freis ED. Mental depression in hypertensive patients treated for long periods with large doses of reserpine. N Engl J Med. 1954;251(25):10061008.

11 Saura J, Kettler R, Da Prada M, Richards JG. Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19- 6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci. 1992;12(5):19771999.

12 van der Stelt HM, Broersen LM, Olivier B, Westenberg HG. Effects of dietary tryptophan variations on extracellular serotonin in the dorsal hippocampus of rats. Psychopharmacology (Berl). 2004;172(2):137144.

13 Lieberman HR, Georgelis JH, Maher TJ, Yeghiayan SK. Tyrosine prevents effects of hyperthermia on behavior and increases norepinephrine. Physiol Behav. 2005;84(1):3338.

14 Woods SK, Meyer JS. Exogenous tyrosine potentiates the methylphenidate-induced increase in extracellular dopamine in the nucleus accumbens: a microdialysis study. Brain Res. 1991;560(1-2):97105.

15 Dowlati Y, Ravindran AV, Maheux M, Steiner M, Stewart DE, Meyer JH. No effect of oral tyrosine on total tyrosine levels in breast milk: implications for dietary supplementation in early postpartum. Arch Womens Ment Health. 2014;17(6):541548.

16 Dowlati Y, Ravindran AV, Maheux M, Steiner M, Stewart DE, Meyer JH. No effect of oral L-tryptophan or alpha-lactalbumin on total tryptophan levels in breast milk. Eur Neuropsychopharmacol. 2015;25(6):779787.

17 Silber BY, Schmitt JA. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010;34(3):387407.

18 Banderet LE, Lieberman HR. Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res Bull. 1989;22(4):759762.

19 Dowlati Y, Ravindran AV, Segal ZV, Stewart DE, Steiner M, Meyer JH. Selective dietary supplementation in early postpartum is associated with high resilience against depressed mood. Proc Natl Acad Sci U S A. 2017;114(13):35093514.

20 American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013 (DSM-V).

21 Velten E Jr. A laboratory task for induction of mood states. Behav Res Ther. 1968;6(4):473482.

22 Clark DM. The velten mood induction procedure and cognitive models of depression: a reply to riskind and rholes (1985). Behav Res Ther. 1985;23(6):667669.

23 Safi-Keykaleh M, Aliakbari F, Safarpour H, et al. Prevalence of postpartum depression in women amid the COVID-19 pandemic: a systematic review and meta-analysis. Int J Gynaecol Obstet. 2022;157(2):240247.

24 Bo HX, Yang Y, Chen J, et al. Prevalence of depressive symptoms among pregnant and postpartum women in China during the COVID-19 pandemic. Psychosom Med. 2021;83(4):345350.

25 Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):13571366.

26 Dowlati Y, Meyer JH. Promising leads and pitfalls: a review of dietary supplements and hormone treatments to prevent postpartum blues and postpartum depression. Arch Womens Ment Health. 2021;24(3):381389.

27 Doornbos B, van Goor SA, Dijck-Brouwer DA, Schaafsma A, Korf J, Muskiet FA. Supplementation of a low dose of DHA or DHA+AA does not prevent peripartum depressive symptoms in a small population based sample. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):4952.

28 Miura Y, Ogawa Y, Shibata A, Kamijo K, Joko K, Aoki T. App-based interventions for the prevention of postpartum depression: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2023;23(1):441.

29 Werner E, Miller M, Osborne LM, Kuzava S, Monk C. Preventing postpartum depression: review and recommendations. Arch Womens Ment Health. 2015;18(1):4160.

The Canadian Health Food Association (CHFA) has announced the winners of its 2024 Industry Achievement Awards

0
Beckie Prime, founder of Becks’s Broth, awarded CHFA One To Watch. Photography courtesy CHFA

Ten winners were recognized in Vancouver on Thursday (April 4) at the association’s annual conference and trade show, CHFA NOW.

The awards celebrate the best-of-the-best in the Canadian natural, organic and wellness industries.

Votes from CHFA members determine some winners, while the John Holtmann Award is chosen by the association’s judging panel.

The CHFA Industry Achievement Award winners for 2024 are:

John Holtmann Industry Achievement Award: Matt LeBeau, LeBeau Excel

CHFA One To Watch Award: Beckie Prime, Beck’s Broth

Agent of Change in Social Justice & Advocacy: Gavin Mah, Biomed

CHFA Celebrating Diversity Award: Margaret Coons, Nuts for Cheese

CHFA Award for Excellence in Retail Sales: Lisa Fry, Nature’s Fare Markets

CHFA Award for Excellence in Sales: Jason Cox, Purity Life Health Products

CHFA Launch Pad Winner: Freshfield Naturals Inc.’s Ocean Saving Omega

Woman of Influence Award: Ellen Wheeler, Alive Publishing Group

Retail Innovation Award: Community Natural Foods

Brand Impact Award: St. Francis Herb Farm

MigraKet® Brings the World’s First Medical Food For Migraine

0

International wellness brand Brain Ritual is launching MigraKet®, a revolutionary approach to migraine management developed by renowned neuroscientist and former chronic migraineur, Elena Gross, PhD. With the U.S. release of MigraKet®, sufferers of migraine can anticipate a newfound hope in managing their condition effectively.

Different from drugs, painkillers and injections that address migraine symptoms, MigraKet® is the first holistic medical food formulation for the management of a potential root cause of migraine. Crafted with high quality, bio-identical nutrients, and bioactive ketone bodies, MigraKet® addresses dysfunctional brain energy metabolism, which can trigger a migraine attack, the body’s warning signal to “de-stimulate.”

MigraKet® Brings the World’s First Medical Food For Migraine to the U.S

“Migraine is a complex condition that demands a deeper, multifaceted approach to management,” stated Dr. Gross. “We want migraine sufferers to regard their pain as a helpful alarm – alerting them of a critical system breakdown. Rather than simply silencing the alarm with pain medication, MigraKet addresses metabolic malfunction, while supporting whole body, multi-system wellness.”

Currently, migraine remains second among the world’s causes of disability, and first among young women. Chronic migraine is defined as having headache on at least 15 days per month, with eight of these having migraine symptoms, for at least three months. Metabolism related migraine, which affects 30%-80% of migraine sufferers, can be associated with migraine attacks triggered by certain foods/drinks, lack of food or oxygen, dehydration, toxins/oxidative stress, intense exercise, lack of sleep or other trigger factors connected to metabolism.

MigraKet® presents a beacon of light for those grappling with migraine, offering a comprehensive approach to symptom management.

The MigraKet® 15-day system ($98) includes 30 water soluble, powder sachets featuring bioactive electrolytes, antioxidants, a multitude of vitamins & minerals, and bioactive ketone bodies – the brain’s preferred fuel.  MigraKet® should be taken twice daily for 4 weeks (2 boxes) in order to notice effects – and may be used as a replacement for a daily multivitamin. MigraKet® is available for pre-order on migraket.com and will ship late April.

“MigraKet represents a paradigm shift in the way we approach migraine management,” continues Dr. Gross. “By harnessing the power of technology and scientific insights, we aim to empower individuals to reclaim their lives from the clutches of migraines.”

Metro and Too Good To Go’s Pioneering Partnership Fuels Savings and Sustainability for Quebecers

0

Metro and Too Good To Go app is setting a new standard in Quebec’s consumer market. This collaboration not only promises to put a dent in the pressing issue of food waste but also offers Quebecers a savvy way to economize on their grocery bills.

Reducing Food Waste

With startling statistics from Recyc-Québec highlighting that 1.2 million tonnes of edible food are wasted annually in Quebec—45% of which comprises fruits and vegetables—there’s a clear and urgent need for change. Metro and Too Good To Go have risen to the challenge, presenting a simple yet effective solution to this burgeoning problem. Their strategy empowers consumers to be part of the solution, offering them an opportunity to rescue surplus yet perfectly consumable fruits and vegetables through the Too Good To Go app.

Surprise Assortments: Your Gain, Earth’s Relief

The initiative allows customers to reserve surprise assortments of the day’s unsold produce for a mere $7.99—a fraction of the retail value pegged at $24. This innovative approach not only affords Quebecers substantial savings but also contributes significantly to the reduction of food waste. Richard Pruneau, Senior Vice President at Metro, underscores the initiative’s value, noting that it complements other efforts by Metro to minimize food wastage and offers customers a novel way to save.

Expanding the Impact

Following the success of this program in Ontario, with around a hundred Metro stores participating since 2022, the partnership took a significant leap forward. After a successful pilot in Quebec last November, the initiative expanded to 93 stores across 13 regions, with plans to include more stores in the near future. Andrea Li, National Director of Too Good To Go Canada, expressed pride in this collaboration, emphasizing its role in amplifying efforts to combat food waste and make a tangible difference in the community.

Metro’s commitment to sustainability extends beyond its partnership with Too Good To Go. Through various initiatives, including a price reduction program for products nearing expiry and the One More Bite program, which redistributes unsold goods to those in need, Metro is at the forefront of the fight against food waste. In 2023 alone, approximately 4 million kilograms of food were salvaged and redistributed, underscoring Metro’s dedication to both sustainability and community welfare.

This partnership is more than a win-win for Quebecers seeking to save on their groceries; it’s a testament to what innovative thinking and responsible business practices can achieve. By marrying economic savings with environmental stewardship, Metro and Too Good To Go are leading by example, showing how businesses can play a crucial role in addressing critical societal issues. As this initiative gains momentum, it’s poised to set a new benchmark for sustainability in the retail sector, offering a blueprint for others to follow. In doing so, it not only contributes to a greener planet but also fosters a more economically resilient and conscientious consumer base in Quebec.

Healthy Planet Crowned Organic Retailer of the Year ny The COTA

0
In an illustrious event that shines a spotlight on the trailblazers of the organic sector, Healthy Planet has been distinguished as the Organic Retailer of the Year by the Canada Organic Trade Association (COTA). This accolade is part of the COTA’s annual Organic Leadership Awards and evening gala, a ceremony dedicated to celebrating the visionaries and pioneers who drive the organic industry forward.
Monica Walker, expressed her gratitude and pride over this esteemed recognition. “Receiving this award from the Canada Organic Trade Association is a true honor. It symbolizes the relentless effort and dedication of our team towards offering top-notch organic products to our customers, fostering innovation along the way,” Walker commented.

Expanding Horizons: Healthy Planet’s Growth and Community Support

Healthy Planet’s trajectory of growth in Ontario reflects its unwavering commitment to the community and adherence to organic principles. With 35 outlets and an expansion plan that includes six additional stores in 2024, including an eagerly awaited branch in Etobicoke last March, Healthy Planet is rapidly increasing its footprint. The stores boast a handpicked selection of products ranging from vitamins and supplements to organic food items and natural beauty products. The presence of in-store nutritionists who provide tailored advice underscores Healthy Planet’s dedication to individual health and wellness.

Honoring Innovation and Leadership in the Organic Sector

The COTA gala served as a platform to acknowledge the accomplishments within the organic domain, paying tribute to individuals and entities driving innovation and growth. Tia Loftsgard, COTA’s executive director, reflected on the significance of the event, “Celebrating the remarkable individuals who have significantly contributed to advancing the organic sector is a highlight for us each year. Their tireless commitment and achievements inspire us all.”

Inspiration for the Future

This year’s COTA Organic Gala and Leadership Awards not only commemorated the progress in the organic sector but also underscored the collective commitment to fostering a healthier planet and society. Through their dedication and innovation, the honorees serve as beacons for the organic movement, inspiring others to contribute to a sustainable and equitable future.

CAMH develops first ever clinically validated natural supplement to prevent postpartum blues

0
CAMH researcher Dr. Jeffrey Meyer stands with his invention, the first ever clinically validated natural supplement to prevent postpartum blues. Image courtesy of CAMH. All rights reserved.
A new study published in the Lancet discovery science journal eClinicalMedicine has confirmed that a novel natural supplement—invented, researched, developed and commercialized at the Centre for Addiction and Mental Health (CAMH)—prevents postpartum blues, and reduces symptoms of postpartum depression over the following six months after giving birth.
Up to 8 out of ten new mothers experience postpartum, or ‘baby,’ blues, characterized by mood swings, crying spells, anxiety and difficulty sleeping. The condition usually begins within the first few days after delivery and may last for up to two weeks. Postpartum blues strongly raises the risk of postpartum depression, a serious mental illness affecting 13 per cent of mothers. Postpartum depression has important health care consequences: impairing quality of life, increasing risk for future depressive episodes and suicide, and is associated with cognitive and emotional effects in children. Until now, options for widespread prevention have been lacking for either condition.

The study, entitled Dietary Supplement for Mood Symptoms in Early Postpartum: A Double-Blind Randomized Placebo Controlled Trial, involved more than 100 postpartum participants between January 2019 and December 2022 who either took four doses of the natural supplement several days after giving birth, or a matching placebo. Within the supplement group, two-thirds (66 per cent) experienced either no symptoms or only negligible symptoms of postpartum blues. Furthermore, in the following six months, participants who received the supplement experienced less symptoms of depression with none reaching the clinical threshold of postpartum depression six months after giving birth.

“Globally 140 million births take place every year. Most women then experience postpartum blues, which, when severe, increases the likelihood of getting full-blown postpartum depression at least fourfold. Our study showed that both postpartum blues and later symptoms of depression were lower in women who received the dietary supplement,” said Dr. Jeffrey Meyer, inventor of the nutraceutical and study senior author. “Providing this specialized dietary support in the first few days after giving birth is a crucial window to avoid depressive symptoms which is tremendously important given there is considerable risk that they may recur and have lifelong impact.”

Dr. Meyer has been investigating postpartum blues for more than 15 years. His previous imaging research found that a protein called MAO-A rises dramatically in the brains of postpartum women and this protein removes important brain chemicals—like serotonin and dopamine—that support normal mood. It also acts as an oxidant and is linked to the development and progression of certain mental illnesses. To combat this effect, the nutraceutical is made up of a patented unique combination of natural ingredients, including blueberry extract, which contain antioxidants, and amino acids that replenish essential neurochemicals in the brain to support healthy mood and the ability to concentrate under stress. The supplement was well tolerated and women who took it tended to report less symptoms, in part due to less drowsiness, headache and restlessness. The researchers previously showed that the amino acids in the supplement do not affect their total concentrations in breast milk, which was expected since these amino acids are already found in proteins in breast milk.

CAMH has partnered with international women’s health supplement and pharmaceutical company Exeltis via a licensing agreement to bring the product to market under the name Blues Away®. Exeltis has maintained the natural health product approach in their preparations and manufacture for widespread distribution of the supplement. It is expected that the product will be available for sale in the U.S. beginning April 11, 2024. It is also in the process of being brought to other global markets—including Canada—with the pace of approvals being dependent on each country’s regulatory requirements and reviews.

“We are thrilled to unveil the culmination of years of dedication and collaboration in the form of our groundbreaking nutraceutical for postpartum blues prevention. It is great that we are able to simultaneously share our clinical research around this product while also partnering with a global women’s health industry leader to make it available to the new mothers who need it,” said Klara Vichnevetski, Director of Industry Partnerships and Technology Transfer. CAMH has nurtured this innovation from its inception, guiding it from bench to bedside where it can make an immediate and profound difference in the lives of millions of women and their families.”

A limitation of the study was that, of the several measures of depression in the study, the supplement did not demonstrate the expected protective effect in an experimental test that involves inducing low mood with sad stimuli, although it is possible that the stress of the COVID-19 pandemic and moving the setting of the study to participants’ homes during the pandemic may have influenced the results of this particular test.

Aristotle Voineskos, Vice President of Research, added: “Two major pillars of our CAMH approach to research are the importance of integrating scientific findings into advancing mental health care and the value of early intervention. Through the perseverance and dedication of our researchers and technology transfer team, this novel preventative therapy may contribute to best practice when it comes to postpartum care and help women around the world avoid more serious and chronic mental illness.”

This research was funded by CAMH, with some additional funding from Exeltis.